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1 Introduction

The question whether two rational, Bayesian agents can agree to disagree goes back to Aumann,
who presented the first formal result addressing this question. In this technical document we review
preliminary theory required to understand Aumann’s result, and then consider Aumann’s theorem.
Furthermore, we consider a few modern developments building on Aumann’s theorem, and we assess
the theory’s applicability to reality.

2 The State-Space Model of Knowledge

The prevailing model of knowledge in information economics and game theory, originally introduced by
Aumann (1976) and commonly called the state-space model of knowledge, considers a set Ω consisting
of the possible states of the world. For each state of the world ω ∈ Ω, an agent’s knowledge is
represented by a subset P (ω) ⊆ Ω: the agent “knows” that the true state is within P (ω), but they
cannot further identify whether any state in P (ω) is true. In other words, for each state of the world
ω ∈ Ω, the agent “knows” to exclude any state in Ω \ P (ω) from being the true state of the world, but
they cannot further exclude any state in P (ω) from being true.

These information functions P : Ω → P(Ω), where P(Ω) is the collection of subsets of Ω, are
typically assumed to satisfy to following two conditions:

(P1) ω ∈ P (ω); and
(P2) ω′ ∈ P (ω) =⇒ P (ω′) = P (ω).

Condition (P1) states that P (ω) indeed contains the true state of the world. Condition (P2) states
that the agent uses consistency of their information function to infer the true state of the world: If
P (ω′) 3 ω′′ /∈ P (ω), then if the true state is ω, the agent can exclude ω′ from being true: ω′′ /∈ P (ω),
so ω′′ cannot possibly be true; if, however, ω′ were true, then ω′′ ∈ P (ω′), which would not be possible
since ω′′ cannot possibly be true. Similarly, if P (ω′) 63 ω′′ ∈ P (ω), then if the true state is ω, the
agent can exclude ω′ from being true: ω′′ ∈ P (ω), so they cannot possibly exclude ω′′ from being true;
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if, however, ω′ were true, then ω′′ /∈ P (ω′), which would not be possible since ω′′ cannot be excluded
from being true. Knowledge functions that satisfy (P1) and (P2) partition Ω: IP = {P (ω) : ω ∈ Ω}.
These partitions IP are called information partitions.

An event is represented by a set of states E ⊆ Ω: the event E happens if ω ∈ Ω, and the event E
does not happen if ω /∈ Ω. For a given state of the world ω, the agent is said to “know E” if P (ω) ⊆ E:
for every state that the agent considers to be possible, the event E happens. An agent’s knowledge
function K gives the set of states K(E) in which the agent knows E:

K : Ω→ Ω, K(E) = {ω ∈ Ω : P (ω) ⊆ E}.

And K(E) is also an event, the event in which the agent knows E. Hence, one could consider K(K(E)),
the event in which the agent knows that they know E.

The knowledge function expresses a number of intuitive properties:

(K1) K(Ω) = Ω.

Property (K1), also called the principle of necessitation, states that in all states the agent
knows that some state in Ω is true.

(K2) K(E) ∩K(F ) = K(E ∩ F ).

Property (K2), also called the principle of conjunction, states that the agent knows E and F if
and only if the agent knows E ∩ F .

(K3) E ⊆ F =⇒ K(E) ⊆ K(F ).

Property (K3), also called the principle of monotonicity, states that if F occurs whenever E
occurs, then the agent knows F whenever they know E.

(K4) K(E) ⊆ E.

Property (K4), also called the principle of truth, states that if the agent knows E, then E has
indeed occurred. This property depends on (P1).

(K5) K(E) = K(K(E)).

Property (K5), also called the principle of transparency, states that the agent knows E if and
only if the agent knows that they know E. This property depends on (P1) and (P2).

(K6) Ω \K(E) = K(Ω \K(E)).

Property (K6), also called the principle of wisdom, states that the agent does not know E if
and only if the agents knows that they do not know E. This property also depends on (P1)
and (P2).

Alternatively, one may take (K1), (K2), and (K3) as axioms and let

P (ω) =
⋂
{E ⊆ Ω : ω ∈ K(E)}.

Then additionally assuming (K4) and (K5) yields that P satisfies (P1) and (P2).
Consider two agents Alice A and Bob B. An event E is called self evident to Alice if Alice knows

the event whenever it occurs; that is, E is self evident if PA(ω) ⊆ E whenever ω ∈ E. Note that a
self-evident event E is the union of elements of the information partition: if the intersection between
PA(ω) and E is nonzero, ω′ ∈ PA(ω) ∩ E, then PA(ω) = PA(ω′) ⊆ E; therefore, KA(E) = E for any
self-evident event E. Furthermore, at a state of the world ω, an event E is called common knowledge
between Alice and Bob if ω ∈ F for some F ⊆ E that is self evident to both Alice and Bob.

Alice’s information partition IA is called finer than Bob’s information partition IB if for every
S ∈ IA it holds that S ⊆ T for some T ∈ IB; we also say that IB coarser than IA. Finer partitions
correspond to “more” knowledge, since agents with finer partitions simply know more events.
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Let the meet IA ∧ IB be the finest common coarsening of IA and IB, which corresponds to the
collection of smallest sets that are self evident to both Alice and Bob; thus, any self-evident event is
made up from elements of IA ∧ IB . Denote by (PA ∧ PB)(ω) that element of IA ∧ IB containing ω. It
then holds that an event E is common knowledge at ω if and only if E includes (PA ∧ PB)(ω).

Let the join IA ∨ IB be the coarsest common refinement of IA and IB. Note that every event E
self evident to Alice and Bob is the union of elements in IA ∨ IB .

Finally, we define Alice’s and Bob’s interactive knowledge Kn as follows:

K1(E) = KA(E) ∩KB(E) : “Alice and Bob know E”,

K2(E) = KA(K1(E)) ∩KB(K1(E)) : “Alice and Bob know that they know E”,

K3(E) = KA(K2(E)) ∩KB(K2(E)) : “Alice and Bob know that they know that they know E”,
...

K∞(E) =

∞⋂
n=1

Kn(E) : E is common knowledge between Alice and Bob.

Theorem 2.1. The two definitions of common knowledge are equivalent.

Proof. Suppose that some event F ⊆ E is self evident to both Alice and Bob. Then

F = KA(F ) ⊆ KA(E) ∧ F = KB(F ) ⊆ KB(E) =⇒ F ⊆ K1(E)

=⇒ F = KA(F ) ⊆ KA(K1(E)) ∧ F = KB(F ) ⊆ KB(K1(E)) =⇒ F ⊆ K2(E)

=⇒ F = KA(F ) ⊆ KA(K2(E)) ∧ F = KB(F ) ⊆ KB(K2(E)) =⇒ F ⊆ K3(E),

so by induction it follows that F ⊆ K∞(E).
Conversely, we show that K∞(E) is self evident to both Alice and Bob. Let ω ∈ K∞(E). We

show that P (ω) ⊆ K∞(E), which amounts to showing that P (ω) ⊆ Kn(E) for every n. Now,

ω ∈ Kn+1(E) = KA(Kn(E)) ∩KB(Kn(E)) =⇒ PA(ω) ⊆ Kn(E),

so indeed PA(ω) ⊆ K∞(E). That K∞(E) is self evident to Bob is shown similarly.

3 Soundness of the State-Space Model

Although the state-space model provides a set-theoretic framework that is convenient to handle,
some properties of K appear dubious from an intuitive and philosophical point of view . Especially
necessitation of monotonicity are often-criticised properties.

Firstly, necessitation dictates that an agent knows every event that is always true. In other words,
if we consider the truths that hold for every state of the world, then the agent must know all of them.
Secondly, let E be the axioms of a logical system, and let F be the theorems valid in that logical
system. Then E ⊆ F , so monotonicity implies that the agent must know all theorems whenever it
knows the axioms. Thirdly, the principle of knowledge states that an event occurs whenever an agent
knows it. In other words, an agent cannot have false knowledge. Finally, the principle of wisdom
states that an agent can only not know an event if the agents knows that they do not know it.

Two additional properties, substitutivity and immediacy, provide further insight in the assumptions
ingrained in the model . The principle of substitutivity states that K(E) = K(F ) whenever E = F .
Although mathematically trivial, substitutivity is philosophically troublesome. To illustrate this, let
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E be the states in which triangles are equilateral, and let F be the states in which triangles are
equiangular. Assuming Euclidean geometry, equilateral triangles are in fact equiangular, so E = F .
This implies that K(E) = K(F ), which means that an agent cannot be unaware of the fact that
equilateral triangles are equiangular.

The principle of immediacy states that an agent knows all events that are supersets of P (ω).
Immediacy emphasises that there is no difference between potential knowledge and actual knowledge:
the agent necessarily and immediately knows all such events .

3.1 Extension and Intension

To further understand the principle of substitutivity, it is helpful to consider the notions of extension
and intension. The extension of a linguistic expression refers to the collection of things that the
expression designates, whereas the intension of the expression refers to the idea or notion conveyed
. For example, the extension of “computer” is the collection of physical computers that exist in our
world, but the intension of “computer” is the idea of a device that can perform computation.

The principle of substitutivity now shows that the state-space model of knowledge respects
extensional equality of events, but completely disregards the intensional dimension. Returning to
the example of equilateral triangles, the fact that “the triangle is equilateral” is extensionally equal
to “the triangle is equiangular” necessarily means that the respective events are equal illustrates the
extensional nature of the model. That one may not equate the idea of an equilateral triangle to the
idea of an equiangular triangle shows that the model completely disregards the intensional dimension.

3.2 Knowledge of Information Partitions

Consider the event that an agent knows that they, or some other agent, knows something. Does this
require the assumption that agent has knowledge of their own and others’ information partition?

A common answer is that the agents’ mental states are part of the state of the world. It then
follows that each agent has a unique information partition: Suppose that Alice knows that Bob’s
knowledge is PB(ω) if ω is true, then for all ω′ ∈ PB(ω) she must reason that Bob’s knowledge is
PB(ω) as well (c.f. the justification of (P2)). Intuitively, this answer argues that for every state of the
world, agents are capable of reasoning what they and other know and would have known, would the
state of the world have been different.

A more satisfactory answer follows from the principles of immediacy and substitutivity. Again
consider Alice and Bob, and consider an event E that happens to be equal to Alice knowing some
other event F : E = KA(F ). If it happens to be that P (ω) ⊆ E, then by immediacy Bob necessarily
knows E, which by substitutivity means that Bob knows that Alice knows F : no assumption about
either Alice’s of Bob’s information partition is required. In other words, knowledge of knowledge is
justified by the principles of immediacy and substitutivity, meaning that one should instead question
the soundness of these principles.

4 Agreeing to Disagree

Suppose that Alice and Bob have a common prior µ, a probability measure on (Ω,Σ). This assumption
is called the Common Prior Assumption (CPA). Let their posterior beliefs about some event E be
respectively qA(E) = µ(E |PA(ω)) and qB(E) = µ(E |PB(ω)). Surprisingly, Alice and Bob cannot
agree to disagree about E:
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Theorem 4.1 (Aumann (1976)). Assume that Ω is countably infinite and IA∨ IB consists of non-null
events. If it is common knowledge that qA(E) = qA and qB(E) = qB , then qA = qB .

Proof. Since qA(E) = qA and qB(E) = qB is common knowledge between Alice and Bob, there exists
an event F that is self evident to both Alice and Bob, meaning that µ(E |F ) = qA and µ(E |F ) = qB .
Clearly, qA = qB .

More carefully, partition F according Alice’s and Bob’s information partitions:

IA = I1A ∪ I2A ∪ · · · , F i
A = F ∩ IiA,

IB = I1B ∪ I2B ∪ · · · , F i
B = F ∩ IiB ,

where we used the assumption that Ω is countably infinite. Then

qA = µ(E |F i
A) =

µ(E ∩ F i
A)

µ(F i
A)

, qB = µ(E |F i
B) =

µ(E ∩ F i
B)

µ(F i
B)

,

where the assumption that IA ∨ IB consists of non-null events guarantees that µ(F i
A) > 0 and

µ(F i
B) > 0. Therefore,

qAµ(F i
A) = µ(E ∩ F i

A), qBµ(F i
B) = µ(E ∩ F i

B),

so summing over i yields the intended result.

Corollary 4.1. If cannot be common knowledge that qA(E) 6= qB(E).

For simplicity, henceforth assume that Ω is finite, and that all ω ∈ Ω have positive prior probability.
Consider a real-valued random variable X : Ω→ R. Denote by E(X|IA) the conditional expectation
of X given PA(ω); that is, E(X|IA) denotes the random variable

E(X|IA) : Ω→ R, E(X|IA)(ω) = E(X |PA(ω)).

Lemma 4.1. E(X | IA ∧ IB) = E(E(X | IA) | IA ∧ IB).

Proof. By definition of conditional expectation, we find that∑
ω′∈PA(ω)

X(ω′)µ(ω′) = E(X |PA(ω))
∑

ω′∈PA(ω)

µ(ω′) =
∑

ω′∈PA(ω)

E(X |PA(ω′))µ(ω), (1)

since E(X |PA(ω′)) = E(X |PA(ω)) for all ω′ ∈ PA(ω). Therefore, summing over all Equation (1)
such that PA(ω) ⊆ (PA ∧ PB)(ω) yields the intended result.

Theorem 4.2. If it is common knowledge that E(X | IA) ≤ E(X | IB), then E(X | IA) = E(X | IB),
and this is common knowledge.

Proof. Since E(X | IA) ≤ E(X | IB) is common knowledge between Alice and bob, there exists an event
F that is self evident to both Alice and Bob, meaning that the inequality holds for all states F . Now,
as a consequence of Lemma 4.1,

E(E(X | IA)− E(X | IB) | IA ∧ IB) = 0.

But E(X |PA(ω′)) ≤ E(X |PB(ω′)) for all ω′ ∈ (PA ∧ PB)(ω) ⊆ F . Therefore, E(X |PA(ω′)) =

E(X |PB(ω′)) for all ω′ ∈ (PA ∧ PB)(ω).
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Corollary 4.2. It cannot be common knowledge that

E(X | IA) < E(X | IB) : “Alice estimates lower than Bob”,

E(X | IA) < E(E(E(X | IB) | IA) | IB) : “Alice estimates lower than Bob’s estimate of Alice’s

estimate of Bob’s estimate’,
...

E(X | IA) < E(E(X | IB) | IA) : “Alice estimates Bob’s estimate to be lower” ,

E(X | IA) < E(E(E(E(X | IB) | IA) | IB) | IA) : “Alice estimates Bob’s estimate of Alice’s estimate

of Bob’s estimate to be lower”,
...

Proof. The first statement directly contradicts Theorem 4.2. The proofs of the remaining statements
are analogous to that of Theorem 4.2, noting by repeated application of Lemma 4.1,

E(E(X | IA) | IA ∧ IB) = E(E(X | IB) | IA ∧ IB)

= E(E(E(X | IA) | IB) | IA ∧ IB)

= E(E(E(E(X | IB) | IA) | IB) | IA ∧ IB)

...

For a random variable X, let the outcome event OX(x) be the set of states ω such that X(ω) = x,
and let X’s value partition IX be the collection of all outcome events. We say that Alice is informed
of X if her information partition IA is a refinement of X’s value partition IX , the coarsest such
refinement being IA ∨ IX . Clearly, if Alice and Bob are informed of X, then X’s outcome events are
self evident to both Alice and Bob.

Theorem 4.3 (Hanson (2002)). If Alice informs Bob that her estimate is lower than her estimate of
future Bob’s estimate, then her estimate must equal her estimate of future Bob’s estimate, and this is
common knowledge.

Proof. Let L be the random variable that is T if Alice’s estimate is lower than her estimate of Bob’s
estimate and F otherwise. By assumption, Bob B is informed of L, which means that future Bob B′ is
informed of L. Therefore, the events OL(T) and OL(F) are self evident to both Alice and future Bob.

Let ω be the true state of the world. If L(ω) = F, then E(X | IA) > E(E(X | IB′) | IA) for all states
in OL(F), which event is self evident to both Alice and future Bob. Hence, this inequality is common
knowledge, which by Corollary 4.2 cannot be, so L(ω) = T. In that case, E(X | IA) ≤ E(E(X | IB′) | IA)

for all states in OL(T), which event again is self evident to both Alice and future Bob. Therefore, this
inequality is common knowledge, which by Corollary 4.2 means that E(X | IA) = E(E(X | IB′) | IA),
and this is common knowledge.

Corollary 4.3. Alice cannot anticipate the direction of Bob’s disagreement.

So far, we have not described a protocol by which Alice and Bob can come to common knowledge.
If Alice and Bob repeatedly announce their current expectations, then Aaronson (2004) shows that to
agree within accuracy ε with probability at least 1− δ, order 1/(δε2) messages suffice. Even if Alice
and Bob send 2 bit summaries of their expectations, order 1/(δε2) messages still suffice . It turns out
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that the presented theory is remarkably robust to generalisations. For example, even if Alice and Bob
are computationally limited, analogous results still hold . Section IV of presents a comprehensive
overview of relaxations of the basic theory.

5 Conclusion

We have seen that two rational, Bayesian agents who share a common prior cannot agree to disagree,
which result turns out to be remarkably robust to generalisations. But that is funny, because in
practice, oftentimes arguments turn into even more heated discussions, with no hope of agreement in
the foreseeable future. And if you estimate a car to be, say, 2 years old, and I estimate that same car
to be 10 years old, then I can pretty reliably predict that your updated estimate will be between 2
and 10 years old, whereas no such anticipation should be possible. So we should take that as evidence
to question the assumptions underlying the results in Section 4. Firstly, in Section 3 we determined
that the state-space model of knowledge might not be sound, because it completely disregards the
intensional dimension of events. Secondly, it is not clear whether CPA holds: it presents difficulties
with transtemporal identity, and it begs the question of what determines the common prior . One
might argue that prior differences due to self-favouring priors, such as self-deceit and indifference to
truth , are observed in practice, suggesting that oftentimes disagreements are simply dishonest.
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